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Logistic regression

The outcome variable in a logistic regression in R can either be a numeric variable with values 0 and 1 or a
factor with two levels. In that case, the first level (which is usually the one that if first alphabetically) is
equivalent to 0 and the other level to 1. This is important, because you have to be able to interpret the
direction of regression parameter estimates.

In this example we are wanting to investigate women’s labour force participation lfp. The data Mroz is of
married women in the US. The outcome variable is a factor with levels no and yes. Therefore, no is equivalent
to 0, and so a positive regression parameter estimate means that an increase in the explanatory variable
increases the probability of labour force participation. The other variables are k5 : number of children 5 or
younger; k618 : number of children 6–18; age: age in years; wc: college attendance; hc: husband’s college
attendance; lwg: log expected wage rate; inc: family income exclusive of wife’s income.
data(Mroz)
head(Mroz)

lfp k5 k618 age wc hc lwg inc
1 yes 1 0 32 no no 1.2101647 10.910
2 yes 0 2 30 no no 0.3285041 19.500
3 yes 1 3 35 no no 1.5141279 12.040
4 yes 0 3 34 no no 0.0921151 6.800
5 yes 1 2 31 yes no 1.5242802 20.100
6 yes 0 0 54 no no 1.5564855 9.859
b1 <- glm(lfp ~ k5 + k618 + age + wc + hc + lwg + inc, family = binomial(),

data = Mroz)
summary(b1)

Call:
glm(formula = lfp ~ k5 + k618 + age + wc + hc + lwg + inc, family = binomial(),

data = Mroz)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.1062 -1.0900 0.5978 0.9709 2.1893

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.182140 0.644375 4.938 7.88e-07 ***
k5 -1.462913 0.197001 -7.426 1.12e-13 ***
k618 -0.064571 0.068001 -0.950 0.342337
age -0.062871 0.012783 -4.918 8.73e-07 ***
wcyes 0.807274 0.229980 3.510 0.000448 ***
hcyes 0.111734 0.206040 0.542 0.587618
lwg 0.604693 0.150818 4.009 6.09e-05 ***
inc -0.034446 0.008208 -4.196 2.71e-05 ***
---
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Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1029.75 on 752 degrees of freedom
Residual deviance: 905.27 on 745 degrees of freedom
AIC: 921.27

Number of Fisher Scoring iterations: 4

If we reverse the coding of the outcome variable, then the signs on the output will change:
lfp.recode <- relevel(Mroz$lfp, "yes")
b1a <- glm(lfp.recode ~ k5 + k618 + age + wc + hc + lwg + inc, family = binomial,

data = Mroz)
summary(b1a)

Call:
glm(formula = lfp.recode ~ k5 + k618 + age + wc + hc + lwg +

inc, family = binomial, data = Mroz)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.1893 -0.9709 -0.5978 1.0900 2.1062

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.182140 0.644375 -4.938 7.88e-07 ***
k5 1.462913 0.197001 7.426 1.12e-13 ***
k618 0.064571 0.068001 0.950 0.342337
age 0.062871 0.012783 4.918 8.73e-07 ***
wcyes -0.807274 0.229980 -3.510 0.000448 ***
hcyes -0.111734 0.206040 -0.542 0.587618
lwg -0.604693 0.150818 -4.009 6.09e-05 ***
inc 0.034446 0.008208 4.196 2.71e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1029.75 on 752 degrees of freedom
Residual deviance: 905.27 on 745 degrees of freedom
AIC: 921.27

Number of Fisher Scoring iterations: 4

Notice that only the signs have changed.

Interpreting parameter estimates

This can be done using an effect plot. Remember that the impact of any explanatory variable on predicted
probabilities depends on the values of the other explanatory variables, so you have to set these too. The
standard choice is the mean, but you might prefer the median. You might also prefer to fix categorical varibles
at a particular level, rather than using the mean (which isn’t really meaningful for a categorical variable).
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The plots show the relatioship between household income and the probability of being in the labour force
separately for the four different combinations of the two college education variables.
plot(Effect(c("inc", "wc", "hc"), b1, typical = median), axes = list(x = list(rug = FALSE)))

inc*wc*hc effect plot

inc

lfp

0.2
0.4
0.6
0.8

  0  20  40  60  80 100

 = wc no
 = hc no

 = wc yes
 = hc no

 = wc no
 = hc yes

  0  20  40  60  80 100

0.2
0.4
0.6
0.8

 = wc yes
 = hc yes

Multinomial logit

Multinomial logistic regression is often used for situations in which people have several choices. In this
example, we have women’s labour force participation again, but now we have three possible states: not in
work, in part time work, and in full time work.
data(Womenlf)
xtabs(~partic + region, Womenlf)

region
partic Atlantic BC Ontario Prairie Quebec

fulltime 6 7 27 8 18
not.work 20 14 64 17 40
parttime 4 8 17 6 7

Womenlf$partic <- relevel(Womenlf$partic, "not.work")

library(nnet)
m1 <- multinom(partic ~ hincome + children + region, data = Womenlf)

# weights: 24 (14 variable)
initial value 288.935032
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iter 10 value 208.509124
iter 20 value 207.732802
final value 207.732796
converged
summary(m1)

Call:
multinom(formula = partic ~ hincome + children + region, data = Womenlf)

Coefficients:
(Intercept) hincome childrenpresent regionBC regionOntario

fulltime 2.124569 -0.10003520 -2.6978183 -0.4599668 0.1135477
parttime -1.825805 0.00526185 0.1462146 1.0863441 0.2856932

regionPrairie regionQuebec
fulltime 0.4680393 -0.3117081
parttime 0.5746633 -0.1105358

Std. Errors:
(Intercept) hincome childrenpresent regionBC regionOntario

fulltime 0.7103039 0.02901632 0.3876747 0.7837059 0.6175130
parttime 0.8269888 0.02468883 0.4901642 0.7193065 0.6175031

regionPrairie regionQuebec
fulltime 0.7332471 0.6515179
parttime 0.7259135 0.6873042

Residual Deviance: 415.4656
AIC: 443.4656
Anova(m1)

Analysis of Deviance Table (Type II tests)

Response: partic
LR Chisq Df Pr(>Chisq)

hincome 14.645 2 0.0006604 ***
children 65.204 2 6.937e-15 ***
region 7.416 8 0.4924500
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m2 <- multinom(partic ~ hincome + children, data = Womenlf)

# weights: 12 (6 variable)
initial value 288.935032
iter 10 value 211.454772
final value 211.440963
converged
m2 <- update(m1, . ~ . - region)

# weights: 12 (6 variable)
initial value 288.935032
iter 10 value 211.454772
final value 211.440963
converged
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summary(m2, Wald = TRUE)

Call:
multinom(formula = partic ~ hincome + children, data = Womenlf)

Coefficients:
(Intercept) hincome childrenpresent

fulltime 1.982842 -0.097232073 -2.55860537
parttime -1.432321 0.006893838 0.02145558

Std. Errors:
(Intercept) hincome childrenpresent

fulltime 0.4841789 0.02809599 0.3621999
parttime 0.5924627 0.02345484 0.4690352

Value/SE (Wald statistics):
(Intercept) hincome childrenpresent

fulltime 4.095266 -3.4607098 -7.06407045
parttime -2.417573 0.2939197 0.04574407

Residual Deviance: 422.8819
AIC: 434.8819
anova(m2, m1)

Likelihood ratio tests of Multinomial Models

Response: partic
Model Resid. df Resid. Dev Test Df LR stat.

1 hincome + children 520 422.8819
2 hincome + children + region 512 415.4656 1 vs 2 8 7.416334

Pr(Chi)
1
2 0.49245
plot(Effect("hincome", m2, xlevels = list(hincome = 50)), confint = FALSE, lines = list(multiline = TRUE),

axes = list(x = list(rug = FALSE)))
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hincome effect plot
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plot(Effect("children", m2), confint = FALSE, lines = list(multiline = TRUE),
axes = list(x = list(rug = FALSE)))
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children effect plot

children

pa
rt

ic
 (

pr
ob

ab
ili

ty
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

absent present

partic
not.work fulltime parttime

Compare to binary logit for full time, with part time treated as missing.
bin <- glm(partic ~ hincome + children, data = Womenlf, subset = partic != "parttime",

family = binomial)
summary(bin)

Call:
glm(formula = partic ~ hincome + children, family = binomial,

data = Womenlf, subset = partic != "parttime")

Deviance Residuals:
Min 1Q Median 3Q Max

-1.8590 -0.5955 -0.4503 0.7470 2.2860

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.03043 0.49806 4.077 4.57e-05 ***
hincome -0.09964 0.02863 -3.481 5e-04 ***
childrenpresent -2.57445 0.36676 -7.019 2.23e-12 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 269.49 on 220 degrees of freedom
Residual deviance: 197.60 on 218 degrees of freedom
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AIC: 203.6

Number of Fisher Scoring iterations: 5

You can see that these are reasonably similar. We could add an interaction.
m3 <- update(m2, . ~ . + hincome:children)

# weights: 15 (8 variable)
initial value 288.935032
iter 10 value 210.797079
final value 210.714841
converged
plot(Effect(c("hincome", "children"), m3, xlevels = list(hincome = 50)), confint = FALSE,

axes = list(x = list(rug = FALSE)))

hincome*children effect plot
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Anova(m3)

Analysis of Deviance Table (Type II tests)

Response: partic
LR Chisq Df Pr(>Chisq)

hincome 15.153 2 0.0005123 ***
children 63.559 2 1.579e-14 ***
hincome:children 1.452 2 0.4837815
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Ordinal models

You have to make sure the levels of the factor you are going to analyse are in the correct order.
Womenlf$partic <- ordered(Womenlf$partic, levels = c("not.work", "parttime",

"fulltime"))

o1 <- polr(partic ~ hincome + children, data = Womenlf, Hess = TRUE)

summary(o1)

Call:
polr(formula = partic ~ hincome + children, data = Womenlf, Hess = TRUE)

Coefficients:
Value Std. Error t value

hincome -0.0539 0.01949 -2.766
childrenpresent -1.9720 0.28695 -6.872

Intercepts:
Value Std. Error t value

not.work|parttime -1.8520 0.3863 -4.7943
parttime|fulltime -0.9409 0.3699 -2.5435

Residual Deviance: 441.663
AIC: 449.663
plot(Effect("hincome", o1, xlevels = list(hincome = 50)), confint = FALSE, axes = list(x = list(rug = FALSE)))
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hincome effect plot
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plot(Effect("children", o1), confint = FALSE, axes = list(x = list(rug = FALSE)))
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children effect plot
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o2 <- update(o1, . ~ . + hincome:children)
plot(Effect(c("hincome", "children"), o2, xlevels = list(hincome = 50)), confint = FALSE,

axes = list(x = list(rug = FALSE)))
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hincome*children effect plot
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In this case, the fit of the ordinal model is worse than that of the multinomial we used before, so unlikely
that the assumptions of the ordinal model are met.

Diagnostics

Going back to the binary logistic regression that we started with, we can look at residuals and Cook’s distance.
residualPlots(b1)

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
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Test stat Pr(>|t|)
k5 0.116 0.734
k618 0.157 0.692
age 1.189 0.275
wc NA NA
hc NA NA
lwg 153.504 0.000
inc 3.546 0.060
influenceIndexPlot(b1, vars = c("Cook", "hat"), id.n = 3)
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Diagnostic Plots

Index

compareCoefs(b1, update(b1, subset = -c(119, 220, 416)))

Call:
1: glm(formula = lfp ~ k5 + k618 + age + wc + hc + lwg + inc, family =

binomial(), data = Mroz)
2: glm(formula = lfp ~ k5 + k618 + age + wc + hc + lwg + inc, family =

binomial(), data = Mroz, subset = -c(119, 220, 416))
Est. 1 SE 1 Est. 2 SE 2

(Intercept) 3.18214 0.64438 3.17623 0.65250
k5 -1.46291 0.19700 -1.54513 0.20273
k618 -0.06457 0.06800 -0.07170 0.06868
age -0.06287 0.01278 -0.06382 0.01293
wcyes 0.80727 0.22998 0.72860 0.23300
hcyes 0.11173 0.20604 0.18053 0.20881
lwg 0.60469 0.15082 0.73622 0.15827
inc -0.03445 0.00821 -0.03894 0.00853
Mroz[c(119, 220, 416), ]

lfp k5 k618 age wc hc lwg inc
119 yes 1 3 38 yes yes 1.299283 91.00
220 yes 1 2 36 no no -2.054124 11.20
416 yes 1 2 39 yes no -1.543298 16.12

The Cook’s distance plots and hat value plots identify different cases as the most outlying, but none look
particularly problematic. However, we can compare the coefficients when we remove those three cases. You
can see that the coefficient of lwg does change by around 1 standard deviation, so there is some evidence
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of lack of fit here. This variable is unusual in that how it is defined depends on the outcome variable. For
women in the labour force, it is the log of actual wage, but for those that aren’t, it is the log of predicted
wage. Let’s have a look at a component plus residual plot.
crPlots(b1, "lwg", pch = as.numeric(Mroz$lfp), id.n = 3)

legend("bottomleft", c("Estimated lwg", "Observed lwg"), pch = 1:2, inset = 0.01)
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We can see the unusual shape that this data has generated. We can see that case 220 is unusual because the
person has 3 children, works, has a low income and a low wage.

Homework

1. Install the package AER.
2. In this package there is a data set called ResumeNames. Have a look at the help page for this data set.
3. The outcome variable of interest is call (whether or not a resume (that’s American English for a CV)

sent in response to a job advert generated a telephone call from a potential employer).
4. The research question is whether the probability of a call is influenced by whether the “candidate”

(these were all fictitious) had an African-American or Caucasian-sounding name.
5. There are a number of other variables in the data that identify characteristics of the “candidate” and

characteristics of the job.
6. Your task is to come up with the best model that tests the hypothesis that ethnicity is associated with

employer response while also controlling for other possible confounding variables.
7. Make sure that you can interpret your results. How would you explain to the reader of a paper in which

you presented your results how much difference there was between employer responses to “Caucasion”
and “African-American” applicants?
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